当前位置: 首页 >财经 > 内容

科学家实现了质子与中子之间高精度的弱力测量

财经
导读 通过能源部橡树岭国家实验室的一项独一无二的实验,核物理学家精确地测量了质子与中子之间的弱相互作用。结果量化了粒子物理标准模型所预测...

通过能源部橡树岭国家实验室的一项独一无二的实验,核物理学家精确地测量了质子与中子之间的弱相互作用。结果量化了粒子物理标准模型所预测的弱力理论。

该团队的弱力观测结果在《物理评论快报》中进行了详细说明,该观测结果是通过一个名为n3He或n-helium-3的精密实验测量的,该实验在ORNL的散裂中子源或SNS上进行。他们的发现产生了迄今为止原子核中任何可比的弱力测量结果中最小的不确定性,从而建立了重要的基准。

标准模型描述了宇宙中物质的基本构造块以及它们之间作用的基本力。计算和测量质子和中子之间的弱力是非常困难的任务。

“由于我们正在寻找的相互作用非常弱,我们想要在精密核物理实验中检测到的影响很小,因此很难观察到,”基本原理的合著者兼团队负责人戴维·鲍曼(David Bowman)说。ORNL的中子物理学。

弱力是自然界中的四个基本力之一,它具有强大的核力,电磁力和引力,它描述了构成质子和中子的被称为夸克的亚原子粒子之间的相互作用。弱力还负责原子的放射性衰变。弱力的某些机制是标准模型中鲜为人知的方面。

检测难以捉摸的弱相互作用需要高精度的实验,这需要大型国际团队的带领,这些团队需要配备先进的设备和中子通量很高的世界一流的冷中子源,例如SNS的基本中子物理射束线。SNS生产的中子非常适合进行精密实验,以解决弱力在中子与其他原子核之间的反应中所起的作用。

鲍曼(Bowman)是该领域的领先科学家,自1960年代初以来一直在研究核物理和亚原子相互作用。

他说:“起初,从经验研究的角度收集了现象学的核模型。但是,近年来,在计算核环境中的弱力相互作用方面取得了重大进展。” “新的核技术已经以不同的自由度获得了,现在的计算处于非常先进的水平。”

科学家的最新实验集中在氦3上。氦3是一种轻而稳定的同位素,由两个质子和一个中子组成,这是自然界中唯一在原子核中比中子多的元素。“当一个中子和一个3氦原子核结合时,该反应会产生一个不稳定的激发氦4同位素,衰变为一个质子和一个三核子(由两个中子和一个质子组成),两者都产生微小但可检测的电当它们穿过靶细胞中的氦气时发出信号。”曼尼托巴大学亚原子物理学教授,通讯作者迈克尔·格里克(Michael Gericke)说。

n-helium-3实验使用了与它的前身NPDGamma相同的中子束线,偏振器和诊断程序,后者使用了液态氢靶,该靶由中子-质子相互作用产生伽玛射线。研究小组发现,相对于中子自旋方向,向下传播的伽马射线多于向上散射的伽马射线,从而成功地测量了弱力的镜面不对称分量。

与NPDGamma相似,n-helium-3实验是十年研究,准备和分析的高潮。该实验的配置创造了一个极低的背景环境,在该环境中,中子进入氦3气体容器之前可以得到控制。盖瑞克(Gericke)领导的小组建立了氦3目标和探测器组合系统,旨在拾取非常小的信号,并领导了后续分析。

在实验中,SNS处的一束缓慢移动或冷的中子进入了3号氦靶。设计了一种仪器来控制3氦原子的核自旋方向。当中子与磁场相互作用时,另一台设备将其自旋方向向上或向下翻转,以定义自旋状态。当中子到达目标时,它们与氦3原子中的质子相互作用,发出由敏感电子设备测量的电流信号。

杰里克说:“我们必须开发一个独特的目标气室,同时用作位置敏感探测器来测量反应的亚原子产物。”

“为了适应该实验的不同运行条件,我们发明了一种新颖的装置,需要在中子与氦3靶反应之前逆转中子的自旋方向,”该大学的合著者兼核物理教授克里斯托弗·克劳福德说肯塔基州。“这款通用自旋鳍板能够在大中子速度范围内高效运行。”

弱力实验必须与强力的主要性质和可能会使数据失真的背景噪声相抗衡。克劳福德说:“ n-helium-3实验必须对很小的影响敏感,比背景小1亿倍。” “这类似于在一个装满干草的40英尺高的谷仓中寻找1英寸的针头。”

在大约一年的时间里,研究小组收集并分析了数据,以确定奇偶违规的强度,这是中子和质子之间弱力的一种特殊性质。这种现象是弱力所特有的,在强力,电磁或重力中没有观察到。

N-hel-3通过测量中子自旋和两个中子极化反应产物的输出动量的组合,利用了受良好控制的中子极化所获得的实验配置的对称性。克劳福德说:“这有一定的优势。” “由于右手和左手在镜子中看起来是相反的,所以这种观察对其他三个力的影响完全不敏感。”

n-helium-3和NPDGamma的结果改变了核物理学家理解弱力在原子核中的作用的方式。两者都可以通过进行准确的计算来回答标准模型中的待解决问题。

“现在,接下来将要发生的事情是,我们需要更多的测量-就像我们在SNS上获得的非常精确的测量一样,”鲍曼说。“在这一领域的进步要求实验者和理论家之间进行对话。随着像我们这样的实验的结果变得可用,它们成为了理论的基准,这使得理论家可以改进预测新的可观测到的模型的模型,然后通过实验可以达到这些新的可观测对象。”

免责声明:本文由用户上传,如有侵权请联系删除!